Congruences concerning generalized central trinomial coefficients

نویسندگان

چکیده

For any n ∈ N = { 0 , 1 2 …<!-- … stretchy="false">} n\in \mathbb {N}=\{0,1,2,\ldots \} and alttext="b c Z"> b c mathvariant="double-struck">Z encoding="application/x-tex">b,c\in {Z} , the generalized central trinomial coefficient alttext="upper T Subscript n Baseline left-parenthesis b right-parenthesis"> T stretchy="false">( stretchy="false">) encoding="application/x-tex">T_n(b,c) denotes of alttext="x Superscript n"> x encoding="application/x-tex">x^n in expansion alttext="left-parenthesis x squared plus right-parenthesis + encoding="application/x-tex">(x^2+bx+c)^n . Let alttext="p"> p encoding="application/x-tex">p be an odd prime. In this paper, we determine summations alttext="sigma-summation Underscript k Overscript p minus Endscripts slash m k"> ∑<!-- ∑ <mml:mi>k −<!-- − </mml:munderover> / m encoding="application/x-tex">\sum _{k=0}^{p-1}T_k(b,c)^2/m^k modulo alttext="p squared"> encoding="application/x-tex">p^2 for integers alttext="m"> encoding="application/x-tex">m with certain restrictions. As applications, confirm some conjectural congruences Sun [Sci. China Math. 57 (2014), pp. 1375–1400].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences Involving Generalized Central Trinomial Coefficients

For integers b and c the generalized central trinomial coefficient Tn(b, c) denotes the coefficient of xn in the expansion of (x2 + bx + c)n. Those Tn = Tn(1, 1) (n = 0, 1, 2, . . . ) are the usual central trinomial coefficients, and Tn(3, 2) coincides with the Delannoy number Dn = ∑n k=0 (n k )(n+k k ) in combinatorics. We investigate congruences involving generalized central trinomial coeffic...

متن کامل

On Apéry Numbers and Generalized Central Trinomial Coefficients

, and E0, E1, E2, . . . are Euler numbers. We show that the arithmetic means 1 n ∑n−1 k=0 (2k+1)Ak (n = 1, 2, 3, . . . ) are always integers and conjecture that ∑n−1 k=0 (2k+1)(−1) Ak ≡ 0 (mod n) for every n = 1, 2, 3, . . . . We also investigated generalized central trinomial coefficient Tn(b, c) (with b, c ∈ Z) which is the coefficient of xn in the expansion of (x2 + bx+ c)n. For any positive...

متن کامل

Apéry Numbers and Central Trinomial Coefficients 3

Define the Apéry polynomial of degree n by A n (x) = n k=0 n k 2 n + k k 2. We determine p−1 k=0 (−1) k A k (1/4) and p−1 k=0 (−1) k A k (1/16) modulo a prime p > 3. Let b and c be integers and let the generalized trinomial coefficient T n (b, c) be the coefficient of x n in the expansion of (x 2 +bx+c) n. We establish the following new congruence p−1 k=0 T k (b, c) 2 (b 2 − 4c) k ≡ c(b 2 − 4c)...

متن کامل

On Congruences Involving Central Binomial Coefficients

Let p be a prime, and let d ∈ {0,. .. , p a } with a ∈ Z +. In this paper we study P p

متن کامل

New Congruences for Central Binomial Coefficients

Let p be a prime and let a be a positive integer. In this paper we determine ∑pa−1 k=0 ( 2k k+d ) /mk and ∑p−1 k=1 ( 2k k+d ) /(kmk−1) modulo p for all d = 0, . . . , pa, where m is any integer not divisible by p. For example, we show that if p 6= 2, 5 then p−1 ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2022

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/15985